Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Microb Genom ; 9(6)2023 06.
Article in English | MEDLINE | ID: covidwho-20244144

ABSTRACT

Invasive group A streptococcal (iGAS) disease cases increased in the first half of 2022 in the Netherlands, with a remarkably high proportion of emm4 isolates. Whole-genome sequence analysis of 66 emm4 isolates, 40 isolates from the pre-coronavirus disease 2019 (COVID-19) pandemic period 2009-2019 and 26 contemporary isolates from 2022, identified a novel Streptococcus pyogenes lineage (M4NL22), which accounted for 85 % of emm4 iGAS cases in 2022. Surprisingly, we detected few isolates of the emm4 hypervirulent clone, which has replaced nearly all other emm4 in the USA and the UK. M4NL22 displayed genetic differences compared to other emm4 strains, although these were of unclear biological significance. In publicly available data, we identified a single Norwegian isolate belonging to M4NL22, which was sampled after the isolates from this study, possibly suggesting export of M4NL22 to Norway. In conclusion, our study identified a novel S. pyogenes emm4 lineage underlying an increase of iGAS disease in early 2022 in the Netherlands and the results have been promptly communicated to public health officials.


Subject(s)
COVID-19 , Streptococcal Infections , Humans , Antigens, Bacterial/genetics , Netherlands/epidemiology , Bacterial Outer Membrane Proteins/genetics , Carrier Proteins/genetics , Streptococcal Infections/epidemiology , Streptococcus pyogenes/genetics
2.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: covidwho-20231953

ABSTRACT

The blood-brain barrier (BBB) is a complex network of tightly regulated cells and transport proteins that separate the circulating blood from the brain tissue [...].


Subject(s)
Blood-Brain Barrier , Brain , Blood-Brain Barrier/metabolism , Brain/metabolism , Biological Transport , Carrier Proteins/metabolism
3.
EBioMedicine ; 92: 104574, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2308166

ABSTRACT

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Subject(s)
COVID-19 , Carrier Proteins , Cricetinae , Humans , Mice , Rats , Animals , COVID-19 Vaccines , SARS-CoV-2 , Protein Subunits , COVID-19/prevention & control , Australia , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral
4.
Proc Natl Acad Sci U S A ; 119(32): e2204539119, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-2311672

ABSTRACT

Viruses evade the innate immune response by suppressing the production or activity of cytokines such as type I interferons (IFNs). Here we report the discovery of a mechanism by which the SARS-CoV-2 virus coopts an intrinsic cellular machinery to suppress the production of the key immunostimulatory cytokine IFN-ß. We reveal that the SARS-CoV-2 encoded nonstructural protein 2 (NSP2) directly interacts with the cellular GIGYF2 protein. This interaction enhances the binding of GIGYF2 to the mRNA cap-binding protein 4EHP, thereby repressing the translation of the Ifnb1 mRNA. Depletion of GIGYF2 or 4EHP significantly enhances IFN-ß production, which inhibits SARS-CoV-2 replication. Our findings reveal a target for rescuing the antiviral innate immune response to SARS-CoV-2 and other RNA viruses.


Subject(s)
COVID-19 , Carrier Proteins , Interferon Type I , Viral Nonstructural Proteins , COVID-19/genetics , Carrier Proteins/metabolism , Cell Line , Eukaryotic Initiation Factor-4E/metabolism , Humans , Immunity, Innate , Interferon Type I/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism , Virus Replication
5.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: covidwho-2306813

ABSTRACT

Neutrophils-polymorphonuclear cells (PMNs) are the cells of the initial immune response and make up the majority of leukocytes in the peripheral blood. After activation, these cells modify their functional status to meet the needs at the site of action or according to the agent causing injury. They receive signals from their surroundings and "plan" the course of the response in both temporal and spatial contexts. PMNs dispose of intracellular signaling pathways that allow them to perform a wide range of functions associated with the development of inflammatory processes. In addition to these cells, some protein complexes, known as inflammasomes, also have a special role in the development and maintenance of inflammation. These complexes participate in the proteolytic activation of key pro-inflammatory cytokines, such as IL-1ß and IL-18. In recent years, there has been significant progress in the understanding of the structure and molecular mechanisms behind the activation of inflammasomes and their participation in the pathogenesis of numerous diseases. The available reports focus primarily on macrophages and dendritic cells. According to the literature, the activation of inflammasomes in neutrophils and the associated death type-pyroptosis-is regulated in a different manner than in other cells. The present work is a review of the latest reports concerning the course of inflammasome activation and inflammatory cytokine secretion in response to pathogens in neutrophils, as well as the role of these mechanisms in the pathogenesis of selected diseases.


Subject(s)
Inflammasomes , Neutrophils , Humans , Inflammasomes/metabolism , Neutrophils/metabolism , Inflammation/metabolism , Macrophages/metabolism , Cytokines/metabolism , Interleukin-1beta/metabolism , Carrier Proteins/metabolism , Pyroptosis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
6.
Opt Express ; 31(8): 12138-12149, 2023 Apr 10.
Article in English | MEDLINE | ID: covidwho-2297198

ABSTRACT

The nanoplasmonic sensor of the nanograting array has a remarkable ability in label-free and rapid biological detection. The integration of the nanograting array with the standard vertical-cavity surface-emitting lasers (VCSEL) platform can achieve a compact and powerful solution to provide on-chip light sources for biosensing applications. Here, a high sensitivity and label-free integrated VCSELs sensor was developed as a suitable analysis technique for COVID-19 specific receptor binding domain (RBD) protein. The gold nanograting array is integrated on VCSELs to realize the integrated microfluidic plasmonic biosensor of on-chip biosensing. The 850 nm VCSELs are used as a light source to excite the localized surface plasmon resonance (LSPR) effect of the gold nanograting array to detect the concentration of attachments. The refractive index sensitivity of the sensor is 2.99 × 106 nW/RIU. The aptamer of RBD was modified on the surface of the gold nanograting to detect the RBD protein successfully. The biosensor has high sensitivity and a wide detection range of 0.50 ng/mL - 50 µg/mL. This VCSELs biosensor provides an integrated, portable, and miniaturized idea for biomarker detection.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Microfluidics , SARS-CoV-2 , Carrier Proteins , COVID-19/diagnosis , Biosensing Techniques/methods , Surface Plasmon Resonance/methods , Lasers , Gold/chemistry
7.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2295696

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the Coronavirus Disease 2019 (COVID-19) pandemic, which is still a health issue worldwide mostly due to a high rate of contagiousness conferred by the high-affinity binding between cell viral receptors, Angiotensin-Converting Enzyme 2 (ACE2) and SARS-CoV-2 Spike protein. Therapies have been developed that rely on the use of antibodies or the induction of their production (vaccination), but despite vaccination being still largely protective, the efficacy of antibody-based therapies wanes with the advent of new viral variants. Chimeric Antigen Receptor (CAR) therapy has shown promise for tumors and has also been proposed for COVID-19 treatment, but as recognition of CARs still relies on antibody-derived sequences, they will still be hampered by the high evasion capacity of the virus. In this manuscript, we show the results from CAR-like constructs with a recognition domain based on the ACE2 viral receptor, whose ability to bind the virus will not wane, as Spike/ACE2 interaction is pivotal for viral entry. Moreover, we have developed a CAR construct based on an affinity-optimized ACE2 and showed that both wild-type and affinity-optimized ACE2 CARs drive activation of a T cell line in response to SARS-CoV-2 Spike protein expressed on a pulmonary cell line. Our work sets the stage for the development of CAR-like constructs against infectious agents that would not be affected by viral escape mutations and could be developed as soon as the receptor is identified.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , COVID-19 Drug Treatment , T-Lymphocytes/metabolism , Carrier Proteins/metabolism
8.
Toxins (Basel) ; 15(4)2023 04 04.
Article in English | MEDLINE | ID: covidwho-2294485

ABSTRACT

Research into various proteins capable of blocking metabolic pathways has improved the detection and treatment of multiple pathologies associated with the malfunction and overexpression of different metabolites. However, antigen-binding proteins have limitations. To overcome the disadvantages of the available antigen-binding proteins, the present investigation aims to provide chimeric antigen-binding peptides by binding a complementarity-determining region 3 (CDR3) of variable domains of new antigen receptors (VNARs) with a conotoxin. Six non-natural antibodies (NoNaBodies) were obtained from the complexes of conotoxin cal14.1a with six CDR3s from the VNARs of Heterodontus francisci and two NoNaBodies from the VNARs of other shark species. The peptides cal_P98Y vs. vascular endothelial growth factor 165 (VEGF165), cal_T10 vs. transforming growth factor beta (TGF-ß), and cal_CV043 vs. carcinoembryonic antigen (CEA) showed in-silico and in vitro recognition capacity. Likewise, cal_P98Y and cal_CV043 demonstrated the capacity to neutralize the antigens for which they were designed.


Subject(s)
Conotoxins , Gastropoda , Sharks , Animals , Vascular Endothelial Growth Factor A , Antibodies , Antigens , Peptides , Carrier Proteins
9.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2296907

ABSTRACT

There are several studies on the deregulated gene expression profiles in kidney cancer, with varying results depending on the tumor histology and other parameters. None of these, however, have identified the networks that the co-deregulated genes (co-DEGs), across different studies, create. Here, we reanalyzed 10 Gene Expression Omnibus (GEO) studies to detect and annotate co-deregulated signatures across different subtypes of kidney cancer or in single-gene perturbation experiments in kidney cancer cells and/or tissue. Using a systems biology approach, we aimed to decipher the networks they form along with their upstream regulators. Differential expression and upstream regulators, including transcription factors [MYC proto-oncogene (MYC), CCAAT enhancer binding protein delta (CEBPD), RELA proto-oncogene, NF-kB subunit (RELA), zinc finger MIZ-type containing 1 (ZMIZ1), negative elongation factor complex member E (NELFE) and Kruppel-like factor 4 (KLF4)] and protein kinases [Casein kinase 2 alpha 1 (CSNK2A1), mitogen-activated protein kinases 1 (MAPK1) and 14 (MAPK14), Sirtuin 1 (SIRT1), Cyclin dependent kinases 1 (CDK1) and 4 (CDK4), Homeodomain interacting protein kinase 2 (HIPK2) and Extracellular signal-regulated kinases 1 and 2 (ERK1/2)], were computed using the Characteristic Direction, as well as GEO2Enrichr and X2K, respectively, and further subjected to GO and KEGG pathways enrichment analyses. Furthermore, using CMap, DrugMatrix and the LINCS L1000 chemical perturbation databases, we highlight putative repurposing drugs, including Etoposide, Haloperidol, BW-B70C, Triamterene, Chlorphenesin, BRD-K79459005 and ß-Estradiol 3-benzoate, among others, that may reverse the expression of the identified co-DEGs in kidney cancers. Of these, the cytotoxic effects of Etoposide, Catecholamine, Cyclosporin A, BW-B70C and Lasalocid sodium were validated in vitro. Overall, we identified critical co-DEGs across different subtypes in kidney cancer, and our results provide an innovative framework for their potential use in the future.


Subject(s)
Kidney Neoplasms , Signal Transduction , Humans , Etoposide , Signal Transduction/genetics , Hydroxyurea , Kidney Neoplasms/genetics , Carrier Proteins , Protein Serine-Threonine Kinases
10.
Biosci Biotechnol Biochem ; 87(6): 638-645, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2267813

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a binding target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. An ACE2-like enzyme, such as bacterial M32-carboxypeptidase (M32-CAP), is assumed to be a potential therapeutic candidate for coronavirus disease 2019 (COVID-19). Here, we screened bacteria with an ACE2-like enzyme activity from Japanese fermented food and dietary products using the fluorogenic substrate for rapid screening. The strain showing the highest activity, Enterobacter sp. 200527-13, produced an enzyme with the same hydrolytic activity as ACE2 on Angiotensin II (Ang II). The enzymatic analysis using the heterologously-expressed enzyme in Escherichia coli revealed that the enzyme catalyzes the same reaction with that of ACE2, Ang II hydrolysis to Ang 1-7, and phenylalanine. The gene sequence information showed that the enzyme belongs to the M32-CAP family. These results suggested that the selected enzyme, M32-CAP (EntCP), from Enterobacter sp. 200527-13 was identified as an ACE2-like enzyme.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Carrier Proteins/metabolism , Protein Binding
11.
Emerg Microbes Infect ; 12(1): e2179357, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2257670

ABSTRACT

The SARS-CoV-2 Omicron variants of concern (VOCs) showed severe resistance to the early-approved COVID-19 vaccines-induced immune responses. The breakthrough infections by the Omicron VOCs are currently the major challenge for pandemic control. Therefore, booster vaccination is crucial to enhance immune responses and protective efficacy. Previously, we developed a protein subunit COVID-19 vaccine ZF2001, based on the immunogen of receptor-binding domain (RBD) homodimer, which was approved in China and other countries. To adapt SARS-CoV-2 variants, we further developed chimeric Delta-Omicron BA.1 RBD-dimer immunogen which induced broad immune responses against SARS-CoV-2 variants. In this study, we tested the boosting effect of this chimeric RBD-dimer vaccine in mice after priming with two doses of inactivated vaccines, compared with a booster of inactivated vaccine or ZF2001. The results demonstrated that boosting with bivalent Delta-Omicron BA.1 vaccine greatly promoted the neutralizing activity of the sera to all tested SARS-CoV-2 variants. Therefore, the Delta-Omicron chimeric RBD-dimer vaccine is a feasible booster for those with prior vaccination of COVID-19 inactivated vaccines.


Subject(s)
COVID-19 , Carrier Proteins , Animals , Humans , Mice , COVID-19 Vaccines , SARS-CoV-2 , Protein Subunits , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral
12.
Front Immunol ; 14: 1151620, 2023.
Article in English | MEDLINE | ID: covidwho-2274456

ABSTRACT

Human urinary proteins are a goldmine of natural proteins a feature that simplifies their translation to biologics. Combining this goldmine together with the ligand-affinity-chromatography (LAC) purification method, proved a winning formula in their isolation. LAC specificity, efficiency, simplicity and inherent indispensability in the search for predictable and unpredictable proteins, is superior to other separation techniques. Unlimited amounts of recombinant cytokines and monoclonal antibodies (mAb) accelerated the "triumph". My approach concluded 35 years of worldwide pursuit for Type I IFN receptor (IFNAR2) and advanced the understanding of the signal transduction of this Type of IFN. TNF, IFNγ and IL-6 as baits enabled the isolation of their corresponding soluble receptors and N-terminal amino acid sequence of the isolated proteins facilitated the cloning of their cell surface counterparts. IL-18, IL-32, and heparanase as the baits yielded the corresponding unpredictable proteins: the antidote IL-18 Binding Protein (IL-18BP), the enzyme Proteinase 3 (PR3) and the hormone Resistin. IFNß proved beneficial in Multiple Sclerosis and is a blockbuster drug, Rebif®. TNF mAbs translated into Remicade® to treat Crohn's disease. Enbrel® based on TBPII is for Rheumatoid Arthritis. Both are blockbusters. Tadekinig alfa™, a recombinant IL-18BP, is in phase III clinical study for inflammatory and autoimmune diseases. Seven years of continuous compassionate use of Tadekinig alfa™ in children born with mutations (NLRC4, XIAP) proved life-saving and is an example of tailored made medicine. IL-18 is a checkpoint biomarker in cancer and IL-18BP is planned recently to target cytokine storms resulting from CAR-T treatment and in COVID 19.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Child , Humans , Carrier Proteins , Interleukin-18 , Antibodies, Monoclonal
13.
J Med Virol ; 95(2): e28419, 2023 02.
Article in English | MEDLINE | ID: covidwho-2270345

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in India in 2020-2022 was driven predominantly by Wild (Wuhan-Hu-1 and D614G), Delta, and Omicron variants. The aim of this study was to examine the effect of infections on the humoral immune response and cross-reactivity to spike proteins of Wuhan-Hu-1, Delta, C.1.2., and Omicron. Residual archival sera (N = 81) received between January 2020 and March 2022 were included. Infection status was inferred by a positive SARS-CoV-2 RT-PCR and/or serology (anti-N and anti-S antibodies) and sequencing of contemporaneous samples (N = 18) to infer lineage. We estimated the levels and cross-reactivity of infection-induced sera including Wild, Delta, Omicron as well as vaccine breakthrough infections (Delta and Omicron). We found an approximately two-fold increase in spike-specific IgG antibody binding in post-Omicron infection compared with the pre-Omicron period, whilst the change in pre- and post-Delta infections were similar. Further investigation of Omicron-specific humoral responses revealed primary Omicron infection as an inducer of cross-reactive antibodies against predecessor variants, in spite of the weaker degree of humoral response compared to Wuhan-Hu-1 and Delta infection. Intriguingly, Omicron vaccine-breakthrough infections when compared with primary infections, exhibited increased humoral responses against RBD (7.7-fold) and Trimeric S (Trimeric form of spike protein) (34.6-fold) in addition to increased binding of IgGs towards previously circulating variants (4.2 - 6.5-fold). Despite Delta breakthrough infections showing a higher level of humoral response against RBD (2.9-fold) and Trimeric S (5.7-fold) compared to primary Delta sera, a demonstrably reduced binding (36%-49%) was observed to Omicron spike protein. Omicron vaccine breakthrough infection results in increased intensity of humoral response and wider breadth of IgG binding to spike proteins of antigenically-distinct, predecessor variants.


Subject(s)
COVID-19 , Vaccines , Humans , Carrier Proteins , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Breakthrough Infections , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
14.
Front Immunol ; 14: 1082191, 2023.
Article in English | MEDLINE | ID: covidwho-2249096

ABSTRACT

Despite recent advances in the research on oncolytic viruses (OVs), a better understanding of how to enhance their replication is key to improving their therapeutic index. Understanding viral replication is important to improve treatment outcomes based on enhanced viral spreading within the tumor milieu. The VSV-Δ51 oncolytic virus has been widely used as an anticancer agent with a high selectivity profile. In this study, we examined the role of the SARS-CoV-2 spike protein receptor-binding domain (RBD) in enhancing VSV-Δ51 viral production and oncolytic activity. To test this hypothesis, we first generated a novel VSV-Δ51 mutant that encoded the SARS-COV-2 RBD and compared viral spreading and viral yield between VSV-Δ51-RBD and VSV-Δ51 in vitro. Using the viral plaque assay, we demonstrated that the presence of the SARS-CoV-2 RBD in the VSV-Δ51 genome is associated with a significantly larger viral plaque surface area and significantly higher virus titers. Subsequently, using an ATP release-based assay, we demonstrated that the SARS-CoV-2 RBD could enhance VSV-Δ51 oncolytic activity in vitro. This observation was further supported using the B16F10 tumor model. These findings highlighted a novel use of the SARS-CoV-2 RBD as an anticancer agent.


Subject(s)
COVID-19 , Oncolytic Virotherapy , Oncolytic Viruses , Vesicular Stomatitis , Animals , Humans , SARS-CoV-2 , Carrier Proteins/metabolism , Cell Line, Tumor , COVID-19/therapy , Vesicular stomatitis Indiana virus/genetics , Oncolytic Viruses/genetics
15.
Free Radic Biol Med ; 191: 150-163, 2022 10.
Article in English | MEDLINE | ID: covidwho-2280216

ABSTRACT

The habitual intake of selenium (Se) varies strongly around the world, and many people are at risk of inadequate supply and health risks from Se deficiency. Within the human organism, efficient transport mechanisms ensure that organs with a high demand and relevance for reproduction and survival are preferentially supplied. To this end, selenoprotein P (SELENOP) is synthesized in the liver and mediates Se transport to essential tissues such as the endocrine glands and the brain, where the "SELENOP cycle" maintains a privileged Se status. Mouse models indicate that SELENOP is not essential for life, as supplemental Se supply was capable of preventing the development of severe symptoms. However, knockout mice died under limiting supply, arguing for an essential role of SELENOP in Se deficiency. Many clinical studies support this notion, pointing to close links between health risks and low SELENOP levels. Accordingly, circulating SELENOP concentrations serve as a functional biomarker of Se supply, at least until a saturated status is achieved and SELENOP levels reach a plateau. Upon toxic intake, a further increase in SELENOP is observed, i.e., SELENOP provides information about possible selenosis. The SELENOP transcripts predict an insertion of ten selenocysteine residues. However, the decoding is imperfect, and not all these positions are ultimately occupied by selenocysteine. In addition to the selenocysteine residues near the C-terminus, one selenocysteine resides central within an enzyme-like environment. SELENOP proved capable of catalyzing peroxide degradation in vitro and protecting e.g. LDL particles from oxidation. An enzymatic activity in the intact organism is unclear, but an increasing number of clinical studies provides evidence for a direct involvement of SELENOP-dependent Se transport as an important and modifiable risk factor of disease. This interaction is particularly strong for cardiovascular and critical disease including COVID-19, cancer at various sites and autoimmune thyroiditis. This review briefly highlights the links between the growing knowledge of Se in health and disease over the last 50 years and the specific advances that have been made in our understanding of the physiological and clinical contribution of SELENOP to the current picture.


Subject(s)
COVID-19 , Selenium , Animals , Biomarkers , Carrier Proteins , Humans , Mice , Peroxides/metabolism , Selenium/metabolism , Selenocysteine , Selenoprotein P/genetics , Selenoprotein P/metabolism
16.
Front Immunol ; 13: 1084331, 2022.
Article in English | MEDLINE | ID: covidwho-2242642

ABSTRACT

SARS coronavirus 2 (SARS-CoV-2) invades the human body by binding to major receptors such as ACE2 via its S-spike protein, so the interaction of receptor-binding sites has been a hot topic in the development of coronavirus drugs. At present, the clinical progress in monoclonal antibody therapy that occurred early in the pandemic is gradually showing signs of slowing. While recombinant soluble ACE2, as an alternative therapy, has been modified by many engineering methods, both the safety and functional aspects are approaching maturity, and this therapy shows great potential for broadly neutralizing coronaviruses, but its progress in clinical development remains stalled. Therefore, there are still several key problems to be considered and solved for recombinant soluble ACE2 to be approved as a clinical treatment as soon as possible.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Humans , Carrier Proteins , Recombinant Proteins
17.
Sci Rep ; 13(1): 2351, 2023 02 09.
Article in English | MEDLINE | ID: covidwho-2234671

ABSTRACT

The high magnitude zoonotic event has caused by Severe Acute Respitarory Syndrome CoronaVirus-2 (SARS-CoV-2) is Coronavirus Disease-2019 (COVID-19) epidemics. This disease has high rate of spreading than mortality in humans. The human receptor, Angiotensin-Converting Enzyme 2 (ACE2), is the leading target site for viral Spike-protein (S-protein) that function as binding ligands and are responsible for their entry in humans. The patients infected with COVID-19 with comorbidities, particularly cancer patients, have a severe effect or high mortality rate because of the suppressed immune system. Nevertheless, there might be a chance wherein cancer patients cannot be infected with SARS-CoV-2 because of mutations in the ACE2, which may be resistant to the spillover between species. This study aimed to determine the mutations in the sequence of the human ACE2 protein and its dissociation with SARS-CoV-2 that might be rejecting viral transmission. The in silico approaches were performed to identify the impact of SARS-CoV-2 S-protein with ACE2 mutations, validated experimentally, occurred in the patient, and reported in cell lines. The identified changes significantly affect SARS-CoV-2 S-protein interaction with ACE2, demonstrating the reduction in the binding affinity compared to SARS-CoV. The data presented in this study suggest ACE2 mutants have a higher and lower affinity with SARS-Cov-2 S-protein to the wild-type human ACE2 receptor. This study would likely be used to report SARS-CoV-2 resistant ACE2 mutations and can be used to design active peptide development to inactivate the viral spread of SARS-CoV-2 in humans.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Mutation , Carrier Proteins/metabolism
18.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2225327

ABSTRACT

Upon infection, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is predicted to interact with diverse cellular functions, such as the nonsense-mediated decay (NMD) pathway, as suggested by the identification of the core NMD factor upframeshift-1 (UPF1) in the SARS-CoV-2 interactome, and the retrograde transport from the Golgi to the endoplasmic reticulum (ER) through the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), where coronavirus assembly occurs. Here, we investigated the expression and localization of the neuroblastoma-amplified sequence (NBAS) protein, a UPF1 partner for the NMD at the ER, participating also in retrograde transport, and of its functional partners, at early time points after SARS-CoV-2 infection of the human lung epithelial cell line Calu3. We found a significant decrease of DExH-Box Helicase 34 (DHX34), suppressor with morphogenetic effect on genitalia 5 (SMG5), and SMG7 expression at 6 h post-infection, followed by a significant increase of these genes and also UPF1 and UPF2 at 9 h post-infection. Conversely, NBAS and other genes coding for NMD factors were not modulated. Known NMD substrates related to cell stress (Growth Arrest Specific 5, GAS5; transducin beta-like 2, TBL2; and DNA damage-inducible transcript 3, DDIT3) were increased in infected cells, possibly as a result of alterations in the NMD pathway and of a direct effect of the infection. We also found that the expression of unconventional SNARE in the ER 1, USE1 (p31) and Zeste White 10 homolog, ZW10, partners of NBAS in the retrograde transport function, significantly increased over time in infected cells. Co-localization of NBAS and UPF1 proteins did not change within 24 h of infection nor did it differ in infected versus non-infected cells at 1 and 24 h after infection; similarly, the co-localization of NBAS and p31 proteins was not altered by infection in this short time frame. Finally, both NBAS and UPF1 were found to co-localize with SARS-CoV-2 S and N proteins. Overall, these data are preliminary evidence of an interaction between NBAS and NBAS-related functions and SARS-CoV-2 in infected cells, deserving further investigation.


Subject(s)
COVID-19 , Neuroblastoma , Humans , RNA Helicases/genetics , RNA Helicases/metabolism , COVID-19/genetics , SARS-CoV-2/metabolism , Nonsense Mediated mRNA Decay , Trans-Activators/metabolism , Carrier Proteins/metabolism
19.
Front Immunol ; 13: 934264, 2022.
Article in English | MEDLINE | ID: covidwho-2198854

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), responsible for COVID-19, has caused a global pandemic. Observational studies revealed a condition, herein called as Long-COVID syndrome (PC), that affects both moderately and severely infected patients, reducing quality-of-life. The mechanism/s underlying the onset of fibrotic-like changes in PC are still not well defined. The goal of this study was to understand the involvement of the Absent in melanoma-2 (AIM2) inflammasome in PC-associated lung fibrosis-like changes revealed by chest CT scans. Peripheral blood mononuclear cells (PBMCs) obtained from PC patients who did not develop signs of lung fibrosis were not responsive to AIM2 activation by Poly dA:dT. In sharp contrast, PBMCs from PC patients with signs of lung fibrosis were highly responsive to AIM2 activation, which induced the release of IL-1α, IFN-α and TGF-ß. The recognition of Poly dA:dT was not due to the activation of cyclic GMP-AMP (cGAMP) synthase, a stimulator of interferon response (cGAS-STING) pathways, implying a role for AIM2 in PC conditions. The release of IFN-α was caspase-1- and caspase-4-dependent when AIM2 was triggered. Instead, the release of pro-inflammatory IL-1α and pro-fibrogenic TGF-ß were inflammasome independent because the inhibition of caspase-1 and caspase-4 did not alter the levels of the two cytokines. Moreover, the responsiveness of AIM2 correlated with higher expression of the receptor in circulating CD14+ cells in PBMCs from patients with signs of lung fibrosis.


Subject(s)
COVID-19 , DNA-Binding Proteins , Pulmonary Fibrosis , COVID-19/blood , COVID-19/immunology , COVID-19/pathology , Carrier Proteins , Caspase 1/immunology , DNA-Binding Proteins/blood , DNA-Binding Proteins/immunology , Humans , Inflammasomes/blood , Inflammasomes/immunology , Interferon-alpha/metabolism , Leukocytes, Mononuclear/immunology , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/virology , SARS-CoV-2 , Transforming Growth Factor beta/metabolism , Post-Acute COVID-19 Syndrome
20.
Antiviral Res ; 209: 105509, 2023 01.
Article in English | MEDLINE | ID: covidwho-2165064

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a threat to global public health, underscoring the urgent need for the development of preventive and therapeutic measures. The spike (S) protein of SARS-CoV-2, which mediates receptor binding and subsequent membrane fusion to promote viral entry, is a major target for current drug development and vaccine design. The S protein comprises a large N-terminal extracellular domain, a transmembrane domain, and a short cytoplasmic tail (CT) at the C-terminus. CT truncation of the S protein has been previously reported to promote the infectivity of SARS-CoV and SARS-CoV-2 pseudoviruses. However, the underlying molecular mechanism has not been precisely elucidated. In addition, the CT of various viral membrane glycoproteins play an essential role in the assembly of virions, yet the role of the S protein CT in SARS-CoV-2 infection remains unclear. In this study, through constructing a series of mutations of the CT of the S protein and analyzing their impact on the packaging of the SARS-CoV-2 pseudovirus and live SARS-CoV-2 virus, we identified V1264L1265 as a new intracellular targeting motif in the CT of the S protein, that regulates the transport and subcellular localization of the spike protein through the interactions with cytoskeleton and vesicular transport-related proteins, ARPC3, SCAMP3, and TUBB8, thereby modulating SARS-CoV-2 pseudovirus and live SARS-CoV-2 virion assembly. Either disrupting the V1264L1265 motif or reducing the expression of ARPC3, SCAMP3, and TUBB8 significantly repressed the assembly of the live SARS-CoV-2 virion, raising the possibility that the V1264L1265 motif and the host responsive pathways involved could be new drug targets for the treatment of SARS-CoV-2 infection. Our results extend the understanding of the role played by the S protein CT in the assembly of pseudoviruses and live SARS-CoV-2 virions, which will facilitate the application of pseudoviruses to the study of SARS-CoV-2 and provide potential strategies for the treatment of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus , Amino Acid Sequence , Tubulin/metabolism , Carrier Proteins/metabolism , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL